Journal of Organometallic Chemistry, 269 (1984) 53-57 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

ELECTROCHEMICAL STUDIES ON ORGANOMETALLIC COMPOUNDS

IX *. ELECTROGENERATION OF AN UNUSUAL SPECIES OF NIOBIUM(III)

A. FAKHR, Y. MUGNIER, R. BROUSSIER and B. GAUTHERON

Laboratoire de Synthèse et d'Electrosynthèse Organométalliques associé au CNRS (LA 33), Faculté des Sciences, 6 boulevard Gabriel 21100 Dijon (France)

(Received January 3rd, 1984)

Summary

The one-electron reduction in THF/(Bu_4N^+ PF₆⁻) of the complex Cp₂NbCl₂ (Cp = η^5 -C₅H₅) at a low temperature (-30°C) yields the anionic dimer (Cp₂NbClCl₂NbClCl₂NbCp₂)⁻ which remains stable for several hours.

Introduction

The chemical reduction of Cp_2NbCl_2 ($Cp = \eta^5 \cdot C_5H_5$) in the presence of various ligands L yields Cp_2NbClL [1]. These compounds can also be prepared electrochemically [2]. Without ligand, depending upon the experimental conditions, the chemical reduction gives $Cp_2NbClCl_2NbCp_2$ [3], Cp_2Nb [4] and Cp_2NbCl [5]. Only the first complex has been obtained as a crystallized product.

We present here the possibility of the electrogeneration at low temperature $(-30 \,^{\circ}\text{C})$ of a new niobium(III) complex.

Experimental

 Cp_2NbCl_2 [6] and $Cp_2NbClCl_2NbCp_2$ [3] were prepared by literature procedures. The electrochemical experiments were carried out under argon at -30 °C. Tetrahydrofuran was purified by distillation from sodium diphenylketyl under argon. The supporting electrolyte was tetrabutylammonium hexafluorophosphate (0.2 *M*); the salt (Fluka) was recrystallized twice from ethanol, dried and deoxygenated before use.

The apparatus and technique have been described previously [7]. The reference electrode was a SCE separated from the solution by a sintered glass disk.

^{*} For part VIII see ref. 8.

Results

On a platinum rotating disk electrode (RDE) at -30 °C, Cp₂NbCl₂ shows only a 1 *e* reduction wave A at -1.22 V *. In cyclic voltammetry, the corresponding peak A is obtained; during the reverse scan, a peak A' is observed at -1.20 V (Fig. 1). At -30 °C, no modification of the cyclic voltammogram is observed at sweep rates varying from 0.01 to 100 V s⁻¹.

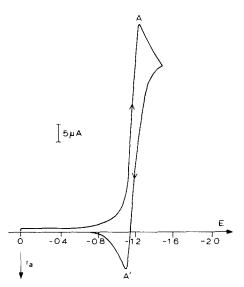


Fig. 1. Cyclic voltammogram of Cp_2NbCl_2 in tetrahydrofuran at -30 °C. Sweep rate 0.050 V s⁻¹. Starting potential 0 V.

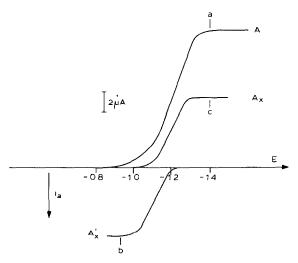


Fig. 2. Voltammogram on the RDE platinum electrode of Cp_2NbCl_2 in tetrahydrofuran at -30 °C (a) Before electrolysis; (b) after electroreduction at -1.5 V; (c) after reoxidation at -0.9 V.

^{*} One oxidation wave E' at +0.35 V is also observed.

After complete electrolysis (at -30 °C) of Cp₂NbCl₂ at -1.5 V (plateau of wave A) on a platinum electrode, 1 F has been consumed and an air sensitive brown solution is obtained. The voltammogram on the RDE platinum electrode of this solution consists of one oxidation wave A'_x at -1.12 V. The height of A'_x is half that of A. The electrochemical oxidation at -0.9 V (plateau of wave A'_x) consumes 0.5 F and a purple solution is obtained. (The initial solution of Cp₂NbCl₂ is pale green). The RDE voltammogram shows a reduction wave A'_x at -1.20 V whose height is equal to that of A'_x (Fig. 2).

Discussion

The 1 *e* reduction of Cp_2NbCl_2 leads first to $Cp_2NbCl_2^-$ which is relatively stable (as shown by the reversibility of the voltammogram of Cp_2NbCl_2). This anion can react by one of the mechanisms (a) to (c):

(a) EC

$$Cp_2NbCl_2 \xrightarrow{+1e} Cp_2NbCl_2^{-}$$

$$\downarrow -Cl^{-}$$

$$\downarrow Cp_2NbCl'$$

Niobiocene monochloride is probably coordinated with a molecule of the solvent (THF). The fact that the half-wave potential of wave A'_x is nearly the same as that of wave A can be explained by a pseudo reversible behaviour due to a return of Cl^- to the molecule [7].

Since the oxidation consumes 0.5 F, the formation of a dimer is very likely and the following mechanism can be proposed.

$$(a_1)$$

This process yields finally the dimer which can be prepared by chemical reduction of Cp_2NbCl_2 [3]. The mechanisms of reduction and of oxidation proposed above are compatible with the relative stability of the anion $Cp_2NbCl_2^-$. However they are not the most probable (vide infra).

(b) ECC

$$Cp_{2}NbCl_{2} \xrightarrow{le^{-}} Cp_{2}NbCl_{2}^{-}$$

$$\downarrow -Cl^{-}$$

$$Cp_{2}NbCl$$

$$\downarrow Cp_{2}NbCl_{2}^{-}$$

$$(Cp_{2}NbCl_{2}NbCl_{2}NbCl_{2})^{-}$$

This implies that the loss of Cl^- is slower than the condensation of Cp_2NbCl on $Cp_2NbCl_2^-$.

(c) EC-CE

$$Cp_2NbCl_2 \xrightarrow{le} Cp_2NbCl_2^{-1} \downarrow_{-Cl}^{-Cl} Cp_2NbCl_2 \downarrow_{-Cl}^{-Cl} Cp_2NbCl_2 (Cp_2NbCl_2) \downarrow_{-Cl}^{-Cl} Cp_2NbClCl_2NbCp_2)$$

This mechanism could operate only if the chemical reactions were very fast and if the neutral dimer was reduced at the potential of Cp_2NbCl_2 . Since the anion $Cp_2NbCl_2^-$ is relatively stable (voltammogram of Cp_2NbCl_2 at -30 °C), we can reject this mechanism.

Mechanism (b) is the most probable and the experimental results for the oxidation can be explained by the reversible reaction:

$$(Cp_2NbClCl_2NbCp_2)^{-1e} \iff (Cp_2NbClCl_2NbCp_2)$$

We have not been able to isolate the anionic dimer because this species is stable only at low temperature $(-30^{\circ}C)$. At $-20^{\circ}C$, this dimer decomposes rapidly; however the nature of the complex is in good agreement with the following results.

By air oxidation of this dimer anion, we have obtained $Cp_2Nb(O)Cl$ [5]; this type of behaviour has already been observed for diverse complexes of niobium(III).

When we add trimethyl phosphite (TMP) to a solution of the product, wave A'_{x} disappears and is replaced by a new oxidation wave A'_{1} at -0.4 V due to the complex Cp₂NbCl(TMP) [2]. The height of the wave A'_{1} is twice that of wave A'_{x} .

We have studied the electrochemical behaviour of the neutral dimer $(Cp_2NbClCl_2NbCp_2)$ prepared chemically [3]. This compound is reducible at A_x (at $-30 \,^{\circ}$ C). In cyclic voltammetry, when the potential scan is reversed after peak A_x , an anodic peak A'_x is obtained. Peaks A_x/A'_x present all the characteristics of a reversible system. Exhaustive electrolysis of $(Cp_2NbClCl_2NbCp_2)$ at -1.4 V consumes 1 F (0.5 F per atom of Nb). The solution which was originally purple becomes brown. The RDE voltammogram of this solution shows wave A'_x . The addition of TMP or air gives the same results as those described above.

We suggest that the most reasonable structure for the anionic dimer $(Cp_2NbClCl_2NbCp_2)^-$ contains a single bridge, as this places 18 electrons on the niobium(III) atoms, although other structures cannot be excluded.

Acknowledgement

The authors wish to express their gratitude to Dr. E. Laviron for his helpful interest.

References

- 1 R. Serrano and P. Royo, J. Organomet. Chem., 247 (1983) 33.
- 2 A. Fakhr, Y. Mugnier, R. Broussier, B. Gautheron and E. Laviron, J. Organomet. Chem., 255 (1983) C8.

- 3 A. Antinolo, M. Fajardo, A. Otero and P. Royo, J. Organomet. Chem., 234 (1982) 309.
- 4 D.A. Lemenovskii and V.P. Fedin, J. Organomet. Chem., 132 (1977) C11.
- 5 D.A. Lemenovskii, T.V. Baukova and V.P. Fedin, J. Organomet. Chem., 132 (1977) C14.
- 6 R. Broussier, H. Normand and B. Gautheron, J. Organomet. Chem., 155 (1978) 337.
- 7 Y. Mugnier, C. Moise and E. Laviron, J. Organomet. Chem., 204 (1981) 61.
- 8 Y. Mugnier, P. Reeb, C. Moise and E. Laviron, to be submitted.